奇数计数

如果 k=1k=1 的话,直接求出序列的异或和,偶数都会两两消掉,所以剩下的就是那个出现了奇数次的数。

如果 k=2k=2 的话,先求出序列的异或和,然后记录一个数组 t[],如果 aia_i 的第 jj 位为 11 的话,就令 t[j] ^= a[i],然后找到 ss11 的某一位,因为 ss 是某两个数异或得到的值,所以 ss 某一位为 11 的话,必定是其中只有一个数这一位为 11 ,此时的 t[j] 即为其中一个数,另一个数就是 s^t[j]

#include <cstdio>
#include <iostream>
using namespace std;

int n, k;
int s, t[32];

int main()
{
cin >> n >> k;

for(int i = 1, x; i <= n; i++)
{
cin >> x;
s ^= x;
for(int j = 0; j <= 30; j++)
if(x>>j&1) t[j] ^= x;
}
if(k == 1)
cout << s << "\n";
else
{
for(int j = 0; j <= 30; j++)
{
if(s>>j&1)
{
int a = t[j], b = s^a;
if(a > b) swap(a, b);
cout << a << " " << b << "\n";
return 0;
}
}
}
}

好图计数

由简单的组合数学可以得到通项公式: f(n)=(n2+2n18)(n!/24)f(n) = (n^2+2n-18)*(n!/24)

但是 n109n \le 10^9,无法直接求阶乘。

可以考虑分段打表,每 10710^7 个位置打一个表,这样利用已有的阶乘值可以在 10710^7 次计算内算出任意一个数的阶乘。

#include <cstdio>
#include <iostream>
using namespace std;
struct Rhine_Lab {
Rhine_Lab()
{
freopen("road.in", "r", stdin);
freopen("road.out", "w", stdout);
}
};
Rhine_Lab Ptilopsis_w;

typedef long long ll;
const int P = 1e9+7;
const int len = 1e7;
const int inv24 = 41666667;
const int biao[] = {
1,682498929,491101308,76479948,723816384,67347853,27368307,625544428,199888908,888050723,927880474,281863274,661224977,623534362,970055531,261384175,195888993,66404266,547665832,109838563,933245637,724691727,368925948,268838846,136026497,112390913,135498044,217544623,419363534,500780548,668123525,128487469,30977140,522049725,309058615,386027524,189239124,148528617,940567523,917084264,429277690,996164327,358655417,568392357,780072518,462639908,275105629,909210595,99199382,703397904,733333339,97830135,608823837,256141983,141827977,696628828,637939935,811575797,848924691,131772368,724464507,272814771,326159309,456152084,903466878,92255682,769795511,373745190,606241871,825871994,957939114,435887178,852304035,663307737,375297772,217598709,624148346,671734977,624500515,748510389,203191898,423951674,629786193,672850561,814362881,823845496,116667533,256473217,627655552,245795606,586445753,172114298,193781724,778983779,83868974,315103615,965785236,492741665,377329025,847549272,698611116
};

int main()
{
ll n; cin >> n;
ll fact = biao[n/len];
for(int i = n-n%len+1; i <= n; i++)
(fact *= i) %= P;
ll ans = (n*n+2*n-18)%P * fact%P * inv24%P;
cout << ans << "\n";
}